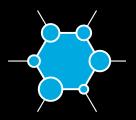


Artificial Inteligence


Ethos and Eclipse developements

Jornadas Inteligencia Artificial Aplicada a la Física Médica Sociedad Andaluza de Física Médica



Miguel Rodriguez Checa | Senior Manager, Digital Oncology Sales Europe

Powerful combination with long-term experience in Artificial Intelligence

More than 1.2 billion clinical images as well as reports, clinical and genomic data

Worldwide super-computing infrastructure with 700 Al experiments per day

More than 650 patent families related to machine learning and more than 250 patent families related to deep learning

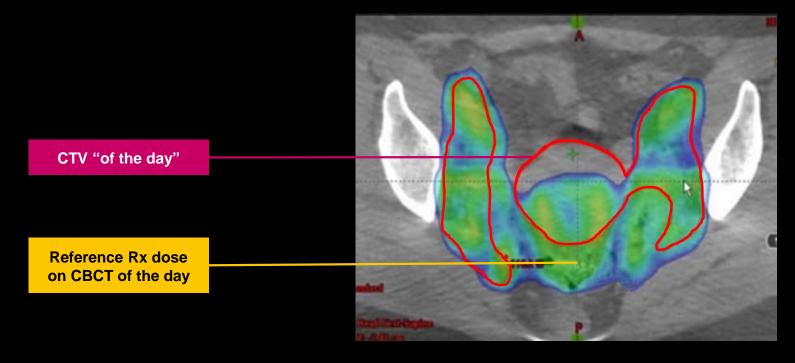
Data on file. Status: November 2021

Ethos treatment therapy

First Al driven linear accelerator

PERSONALIZATION • PERFORMANCE • CONFIDENCE

ETHOS

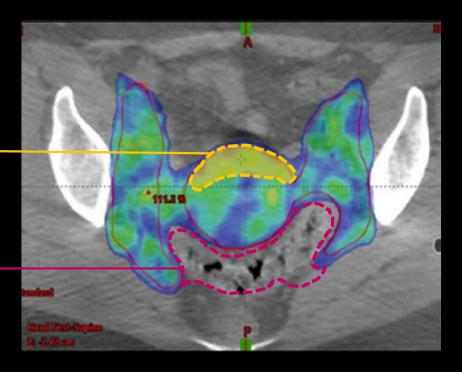

HYPERSIGHT

3+
untries

Clinics

Why do we need to adapt?

What does the treatment look like today with IGRT?


Actual dose delivered by IGRT

Benefits of selecting the adapted plan

Target Coverage
Improved target coverage
and more homogeneous dose

Dose SparedReduced dose outside of CTV of the day

CBCT-based adapted plan

An integrated suite of solutions for the entire adaptive journey

Al-driven Technology & Guided Workflow

For efficient oART – 15-minute adaptive steps *

*Ethos online adaptive steps includes image review, structure review, target review and plan review

Treatment Technique Flexibility

Choose between adaptive radiotherapy or sliding window IMRT/ VMAT

HyperSight CBCT Images and Adaptation

To visualize more and adapt directly on today's anatomy

HYPERSIGHT

HyperSight Next generation CBCT

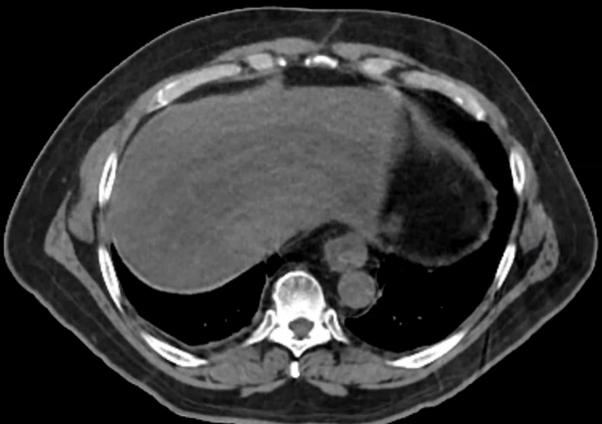
6-second **Imaging**

Metal Artifact Reduction

High soft tissue contrast

Correct HU values

Reduced **Imaging** Dose

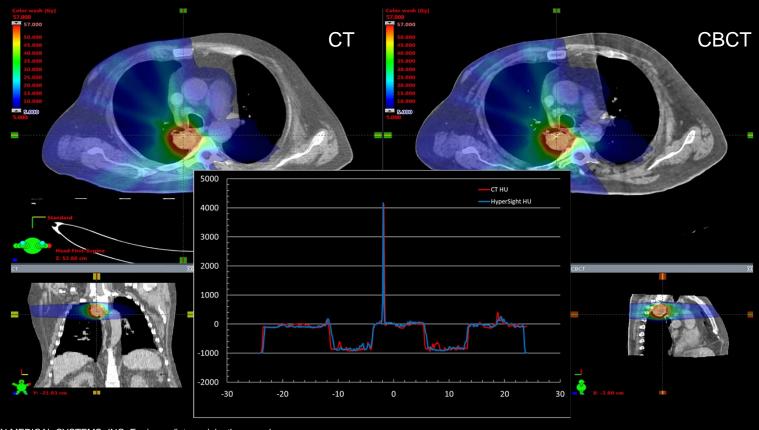

Larger **Field**

HyperSight: Image Quality

Going beyond IGRT

HYPERSIGHT

Stomach
Pancreas
Duodenum


Image courtesy of Washington University in Saint Louis.

HYPERSIGHT

HyperSight: Precision

Images you can plan on

PERSONALIZATION

93.0%

Adaptive plan selection frequency

PERFORMANCE

15_{min}

Average duration of adaptive steps*

CONFIDENCE

8.0x

Increase in Pancreas SBRT Adaptive vs. IGRT

Ethos workflow

Supported with informed decisions

Image Review	5-10 seconds	
Structures Review	~4.4 minutes	NEW ETHOS 2.0
Target Review	~4.5 minutes	
Plan Review	~4.9 minutes	
Total time for Ethos 2.0 Online Adaptive Steps	15 minutes	

Al segmentation expansion

For efficient clinical workflow

- Designed to remove repetitive and timeconsuming tasks
- Head & Neck, Abdomen, Thorax, Bowel, and Pelvis anatomical regions
- Same AI models from initial planning through oART

Head & Neck

Brain Parainstem G
Eye_L/R Las_L/R G
OpticChiasm M
OpticNrv_L/R C
Lips G
Bone Mandible G

Parotid_L/R
GInd_Submand_L/R
Larynx_SG
GInd_Lacrimal_L/R
Musc_Constrict_S/M/I
Cochlea_L/R
GInd_Thyroid
Glottis

Abdomen

Cavity_Oral

Kidney_L/R Liver Spleen Stomach Gallbladder Pancreas Duodenum

Bowel

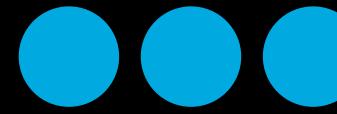
Bowel Large Bowel Small

Colon_Sigmoid Colon SmallBowel-Duo

Other

SpinalCord

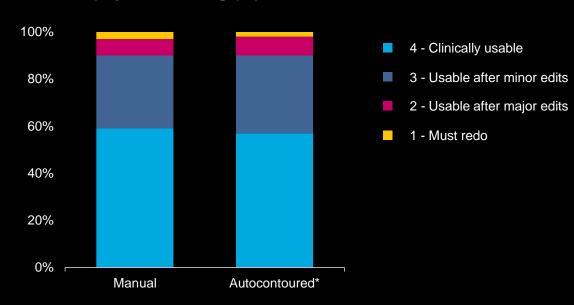
External (≈ Body)


Thorax

A_Aorta Breast_L/R Heart Lung_L/R Ribs_L/R Esophagus A_Pulmonary V_Venacava_S/I Bronchus SpinalCanal Trachea Chestwall_L/R GreatVes

Pelvis

Femur_Head_L/R SeminalVes Prostate Rectum Bladder PenileBulb Bone_Pelvic Uterus



Autocontouring integrated in Eclipse

Blinded evaluation of auto contouring at Universitätsklinikum Erlangen

Blinded physician rating (%)

- *The case evaluation was conducted with Organs RT on syngo.via RT Image Suite.
- The feedback and the results are from the collaboration performed at UKER
- The statements by Siemens Healthineers' customers described herein are based on results that were achieved in the
 customer's unique setting. Since there is no "typical" hospital and many variables exist (e.g., hospital size, case mix, level of
 IT adoption) there can be no guarantee that other customers will achieve the same results.

"Current state-of-the art enables OAR auto segmentations that are on par with human experts"

"Important prerequisite to automate and accelerate RT planning workflow by multiple orders of magnitude (Adaptive Radiotherapy/plan of the day)"

Dr. Florian PutzPhysicist, Radiation Oncology
Universitätsklinikum Erlangen,
Germany

Study details:

Clinical evaluation of 50 CT datasets for 5 sites with each 10 cases.

3 RT physicians (one Senior Physician, two Physicians) rated auto contouring solutions & peers (each other).

Varian Autocontouring supported anatomical sites

Breast & Lung Head & Neck

Brain

Brainstem

Eye globe (L/R)

Lens (L/R)

Optic nerve (L/R)

Optic chiasm

Cochlea (L/R)

Parotid gland (L/R)

Submandibular gland (L/R) •

Oral cavity

Mandible

Lips

Larynx (L/R)

Glottis

Supraglottic larynx

Pharyngeal constrictor muscle (inf/mid/sup)

Brachial plexus (L/R)

Thyroid

Female breasts (L/R)

Lung (L/R)

Lung lobes (RI, RM, RS, LI, LS)

Trachea

Proximal bronchial tree

Chest wall (L/R)

Whole heart

Atrium (L/R)

Ventricle (L/R)

Ventricle Left Endocardium

Left Circumflex

Right Coronary Artery

LAD

Aorta

V. Cava (inf/sup)

Pulmonary artery

Individual ribs (24 ribs)

Sternum

Stomach

Liver

Spleen

Kidneys (L/R)

Pancreas

Abdominopelvic cavity

Duodenum

Bowel (small/large)

Pelvic area

Bladder

Prostate

Penile bulb

Rectum

Multi-site

Body contours

Spinal cord

Spinal canal

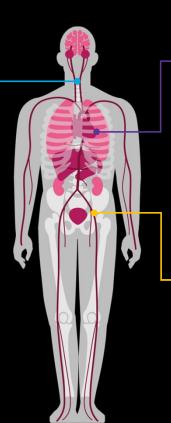
Esophagus

Skeleton

Sigmoid

Proximal femur (L/R)

Seminal vesicles


Uterus

Varian Autocontouring supported lymph nodes

Head & Neck

- Level la: Submental triangle
- Level Ib Submandibular triangle (L/R)
- Level II: Upper jugular nodes (L/R)
- Level III: Middle jugular nodes (L/R)
- Level IVa: Lower jugular group (L/R)
- Level IVb: Medial supraclaicular group (L/R)
- Level V: Posterior triangle group (L/R)
- Level Vc: Lateral supraclavicular group (L/R)
- Level VIa: Anterior jugular nodes
- Level VIb: Prelaryngeal, pretracheal, and paratracheal nodes
- Level VIIa: Retropharyngeal nodes (L/R)
- Level VIIb: Retro-styloid nodes (L/R)
- Level VIII: Parotid group (L/R)
- Level IX: Bucco-facial group (L/R)
- Level Xa: Retroauricular and subauricular nodes (L/R)
- Level Xb: Occipital nodes (L/R)

Breast & Lung

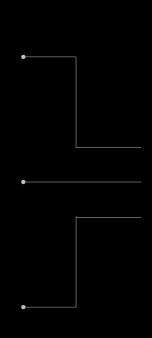
- LN Axilla Level I (L/R)
- LN Axilla Level II (L/R)
- LN Axilla Level III (L/R)
- LN Internal Mammary (L/R)
- LN Supraclavicular (L/R)

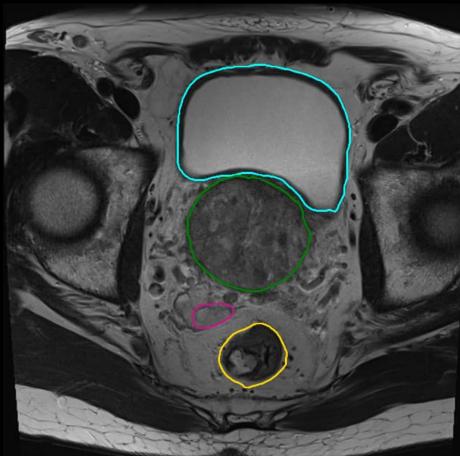
Pelvic area

- LN Common Iliac (L/R)
- LN Internal Iliac (L/R)
- LN External Iliac (L/R)
- LN Obturator (L/R)
- LN Presacral

Al-based autocontouring on MR images for the male pelvis1

Organs-at-risk Contouring

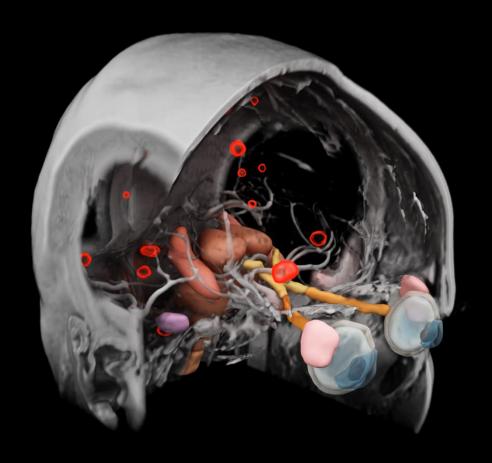

Automatic contouring of 8 structures Anal canal, Penile bulb, Bladder, Prostate, Body, Rectum, Femur left and right, Seminal vesicles


MR-Only workflow

In combination with Synthetic CT created with a dedicated sequence, a complete MR-only workflow can be offered

The base for the future

Will the "prostate tsunami" hit the RT departments too?

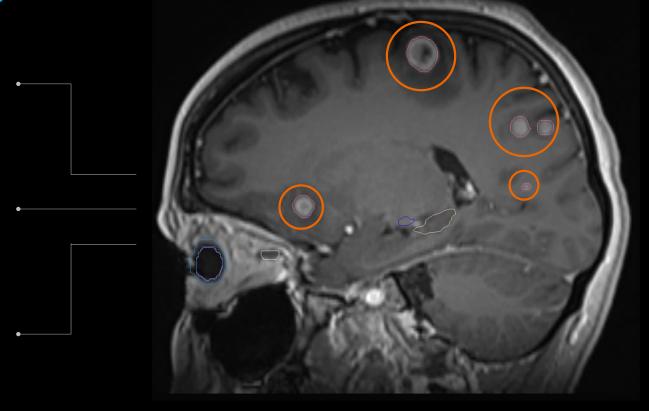


Al-based autocontouring on brain MRI images^{1,2}

Courtesy: Acibadem Atasehir Hospital, Instanbul, Turkey
1 Al-Rad Companion Organs RT VA70 is not commercially available in all countries, and its future availability cannot be ensured. Not for sale in the USA. 2 syngo.via RT@nage-Sulfet/IG10 Isl E@1(@mnexsally available in all counteids and displuture availability cannot be ensured. Not for sale in the USA. Rendering not generated in Al-Rad Companion Organs RT VA70 nor syngo.via RT Image Suite VC10

Al-based contouring on brain MRI images^{1,2}

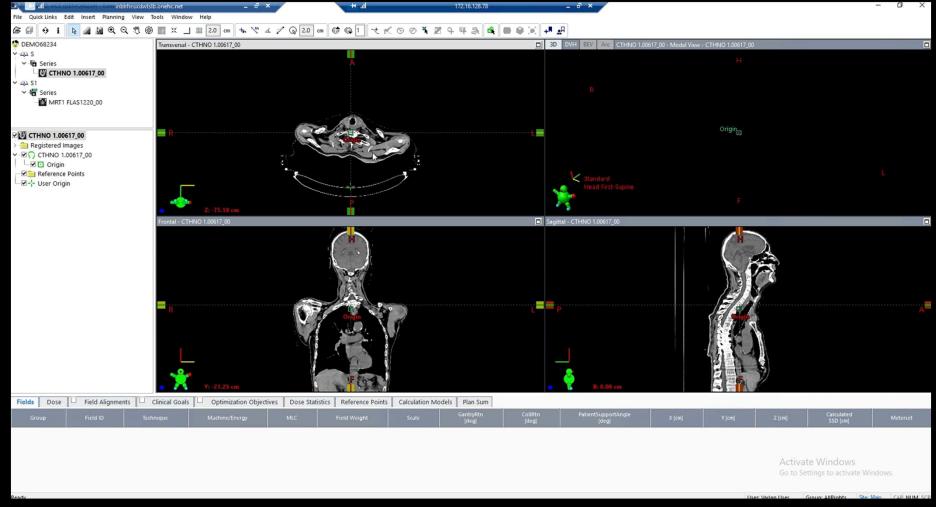
Brain metastasis and Organs at Risk


Organs at Risk Contouring

Automatic contouring of 12 structures Brainstem, Cochlea, Cornea, Eyes, Hippocampus, Lacrimal glands, Lens, Optic Nerves, Optic Chiasm, Pituitary, Retina, Spinal Cord

Brain metastasis as GTV's

Automatic contouring of intraparenchymal metastases on post-contrast T1 IMPRAGE


The base for radiosurgery
The RT Struct files with all contours can be
used for a treatment planning

 ${\tt Courtesy: Acibadem \, Atasehir \, Hospital, \, Instanbul, \, Turkey}$

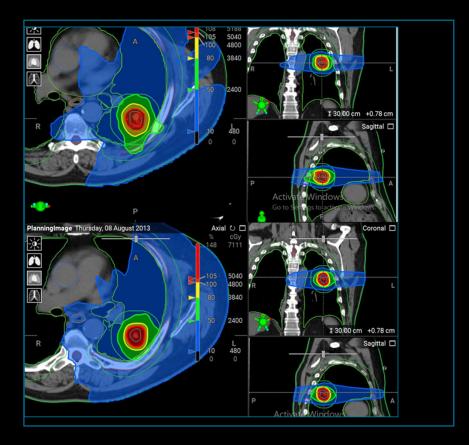
1 Al-Rad Companion Organs RT VA70 is not commercially available in all countries, and its future availability cannot be ensured. Not for sale in the USA. 2 syngo.via RT Image Suite VC10 is not commercially available in all countries, and its future availability cannot be ensured. Not for sale in the USA.

Automated Plan Generation

Offers flexibility in Treatment Technique

- Ethos delivers flexibility in:
 - Treatment technique adaptive or IGRT
 - IMRT, VMAT, SBRT
- IMRT and VMAT plans are generated automatically
 - Dose calculations done with the Acuros XB algorithm
 - Optimization and dose calculations powered by GPU

	Not approved	Not approved	Not approved	Not approved
Phase 1, displayed for	<u>IM119</u>	<u>IM120</u>	<u>VA110</u>	<u>VA121</u>
Fractions 1 - 25 (full phase)	IMRT plan with 9 equidistant fields	IMRT plan with 12 equidistant fields	VMAT plan with 3 full arcs	VMAT plan with 2 full arcs
Fractions 8 - 25 (partial phase)	RDSMCH1	RDSMCH1	RDSMCH1	RDSMCH1
Targets Summary	42		1 2	2
P2 CTV-N V95.0 %≥95.0 %	99.8 %	99.9 %	99.4%	99.1 %
P2 CTV-T V95.0 %≥95.0 %	99.7%	99.6 %	98.1%	99.0 %
P2 PTV Dmax(0.50 cm3)≤107.0 % Dmax(0.50 cm3)≤128.0 %	118.8 %	#112.7.\$	120.1 \$	126.5 \$
P2 PTV V95.0 %≥95.0 %	95.0 % 	95.0 % 	95.0%	95.0%
P2 PTV_boost D98.0 %≥95.0 % D98.0 %≥90.0 %	90.8 %	90.4 %	90.9 %	90.7 \$
P2 PTV_boost Dmax(0.50 cm3)≤105.0 % Dmax(0.50 cm3)≤107.0 %	97.2 %	96.3 %	98.3 %	103.5 %
Organs Summary	13 -1	13 -1	13 -1	13 -1
P1 Bladder Dmax(0.50 cm3)≤34.06 Gy	32.49 Gy	31.88 Gy	31.69 Gy	32.10 Gy
P2 Bladder V21.60 Gy<85.0 %	73.7 %	62.3 %	68.5%	72.7 %
P2 Bladder V28.80 Gy<75.0 %	39.6 %	28.6 %	41.2 %	42.2 %


Intelligent Optimization Engine

Enhancements

- Improved Intelligent Optimization Engine vs. Ethos v.1
 - Improved plan quality
 - Faster treatment delivery
- SBRT planning solution
 - High fidelity dose calculation and optimization for ultimate conformality
 - Availability of dose calculation grids down to 1.25mm

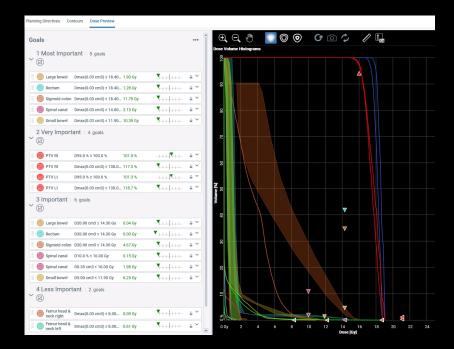
RapidPlan with Intelligent Optimization Engine

Fast track toward optimal treatment plan

Using RapidPlan to drive the IOE2 offers the potential to enhance:

Speed

- Reduce optimization time²
- Lessen planner interaction²
 - Using less user defined goals


Quality

- Improve adaptive plan quality²
 - Reduce the dose to the OAR whilst maintaining target coverage¹

Knowledge sharing

- Unlock the recipe for the optimal plan
- Bridge the gap in Planner experience²
- Yoganathan SA, Basith A, Rostami A et al. Investigating the impact of RapidPlan on Ethos automated planning Medical Dosimetry Jul28 2:56 2024
- Visak J, Liao CY, Zhong X et al. Assessing population-based to personalized planning strategies for head and neck adaptive radiotherapy. Journal of Applied Clinical Medical Physics. 03 December 2024

23 © 2024 VARIAN MEDICAL SYSTEMS, INC. For immediate recipient's use only.

IOE2 and RapidPlan Studies

Results

RapidPlan-enabled strategy demonstrated

faster
optimization
time than both
population-based and Alguided strategies.²

Up to 10% less

dose to pelvic OARS.

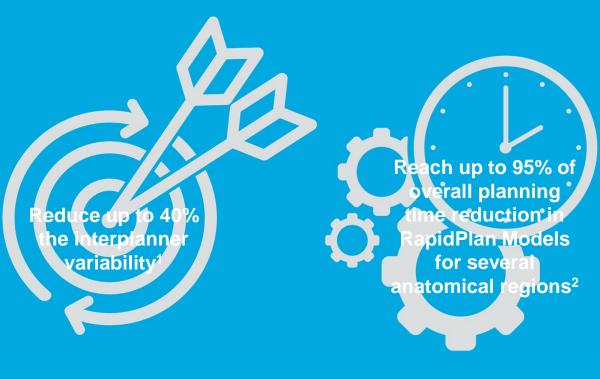
Mean doses of the bladder, rectum, and peritoneal space were significantly lower by 4%, 8% and 10% respectively.¹

20Gy → 15Gy

Average contralateral parotid gland mean dose reduction RapidPlan offers enhanced dosimetric sparing in organs-at-risk (OAR).²

The statement by Varian's customer described here is based on results achieved in the customer's unique clinical setting. Because there is no "typical" clinical setting and many variables exist, there is no guarantee that other customers will achieve the same results.

. Yoganathan SA, Basith A, Rostami A et al. Investigating the impact of RapidPlan on Ethos automated planning . Medical Dosimetry Jul28 2:56 2024


2. Visak J, Liao CY, Zhong X et al. Assessing population-based to personalized planning strategies for head and neck adaptive radiotherapy. Journal of Applied Clinical Medical Physics. 03 December https://doi.org/10.1002/acm2.14576

Machine Learning + Human Intelligence

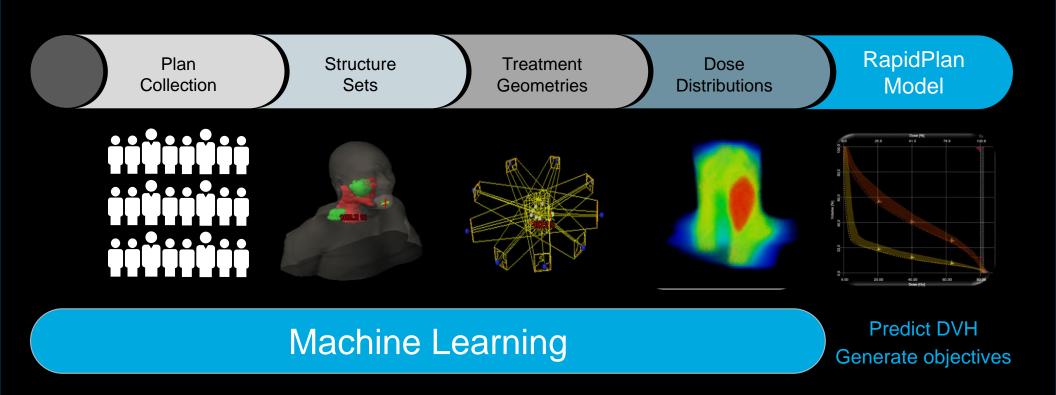
RapidPlan and MCO

lan ca significant process and roduce quality plans

Consistency

Efficiency

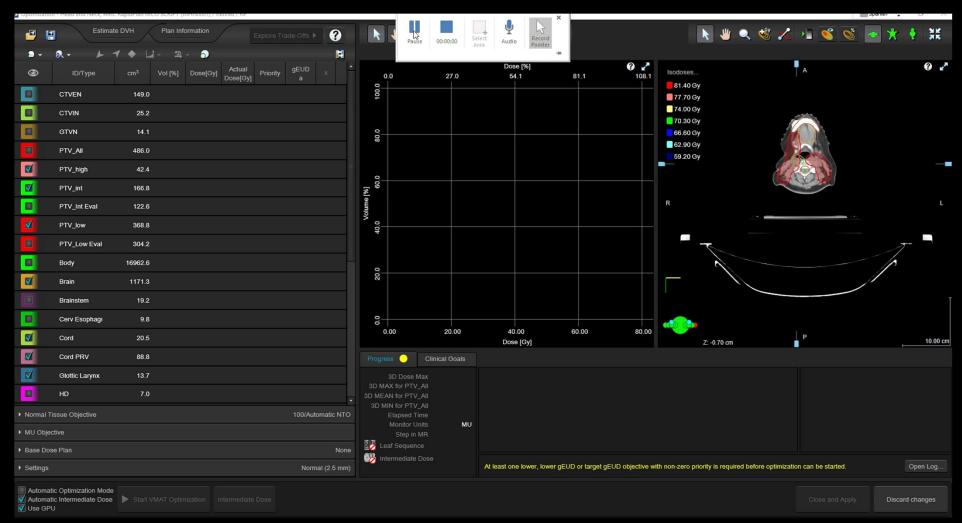
Quality


1.Scaggion et al (2018) Reducing inter- and intra-planner variability in radiotherapy plan output with a commercial knowledge-based planning solution. Physica Medica, 86-93, https://doi.org/10.1016/j.ejmp.2018.08.016

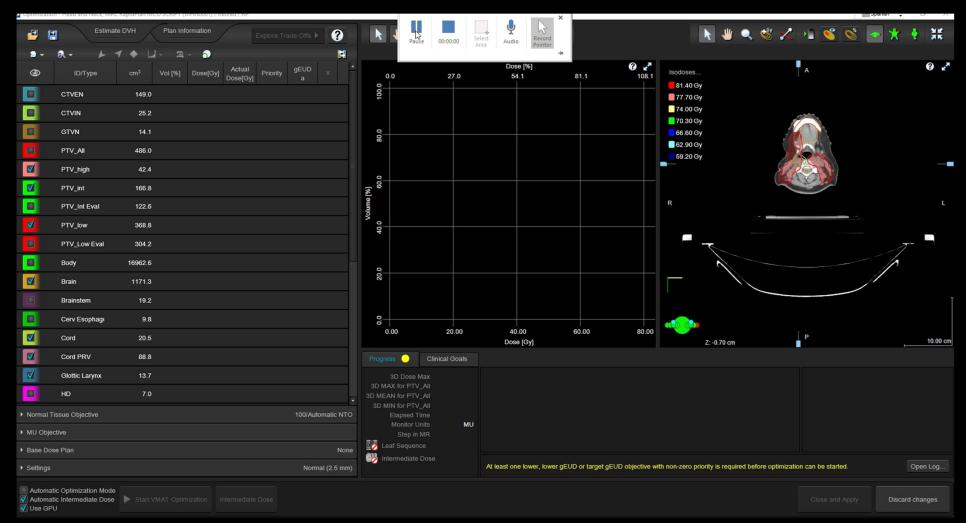
2.K. van Gysen et al. (2020) Rolling out RapidPlan: What we've learnt. Journal of Medical Radiation Sciences, 67 (310-317) https://doi.org/10.1002/jmrs.420

3.Chang et al. (2016) Comparison of Planning Quality and Efficiency between conventional and Knowledge-based algorithms in Nasopharyngeal cancer patients using Intensity Modulated Radiation Therapy,

RapidPlan™ knowledge-based planning

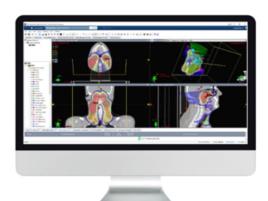


Eclipse Rapidplan



'We expected the biggest impact on the high dose distributions and NTCP for the patient dosimetry historically will be coming from IMRT or VMAT introduction on the workflow, but the fact is that RapidPlan was the biggest and fastest contribution for the plan quality improvement'

Pedro Gallego Franco
Medical Physicist
Medical Physics and Radioprotection
department
Hospital de la Santa Creu i Sant Pau
Barcelona, Spain



Varian's Eclipse treatment planning system now compatible with IBA Proteus® ONE treatment delivery system

Robust Proton Planning – Leverage Eclipse system's robust proton optimization, powered by the Monte Carlo-based AcurosPT algorithm.

Seamless Interoperability – Enable effortless data exchange between Eclipse and IBA's Proteus ONE, a compact single-room proton system.

Streamlined Workflow – ARIA CORE and Eclipse work together to support end-to-end clinical workflows with automation and patient outcome tracking.

Automated Capabilities – Utilize RapidPlan PT adaptive planning workflows directly through Eclipse to help enhance efficiency.

CONTACT US

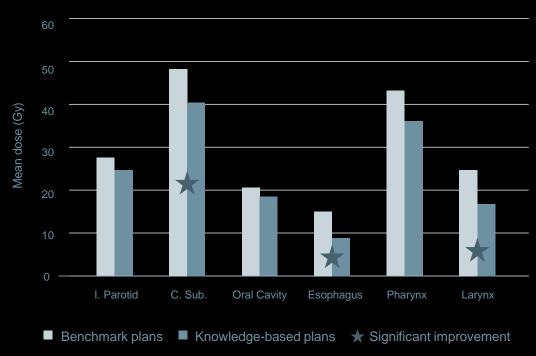
Connect with your local Varian sales representative to learn more about Eclipse and Proteus ONE.

Visit us at www.varian.com

© 2025 Varian Medical Systems, Inc. All trademarks are the property of their respective owners. QR700023823

RapidPlan for Proton treatment planning

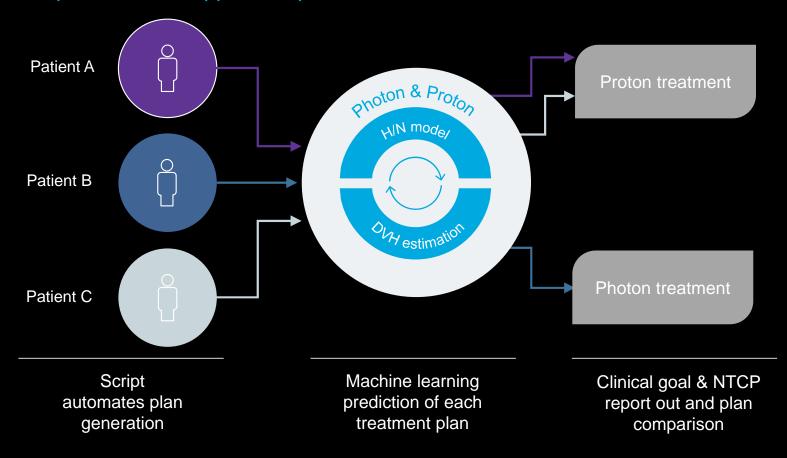
First clinical application of machine learning in proton therapy



RapidPlan for Protons

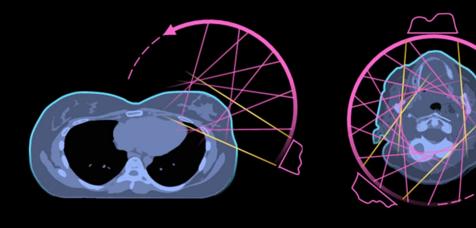
RapidPlan PT automatically generated plans that were originally created for patients at 4 leading proton centers

Source: Joint Publication on RapidPlan PT: VUMC, UPENN, PSI, & CCHMC, https://www.mdpi.com/2072-6694/10/11/420/htm


Plan quality improvement: Reduced dose to OARs

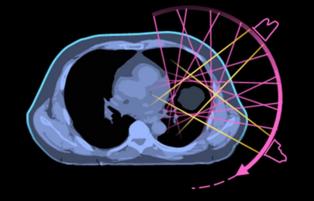
RapidPlan and Scripting for Proton decision making

Proof of concept: Decision Support Script

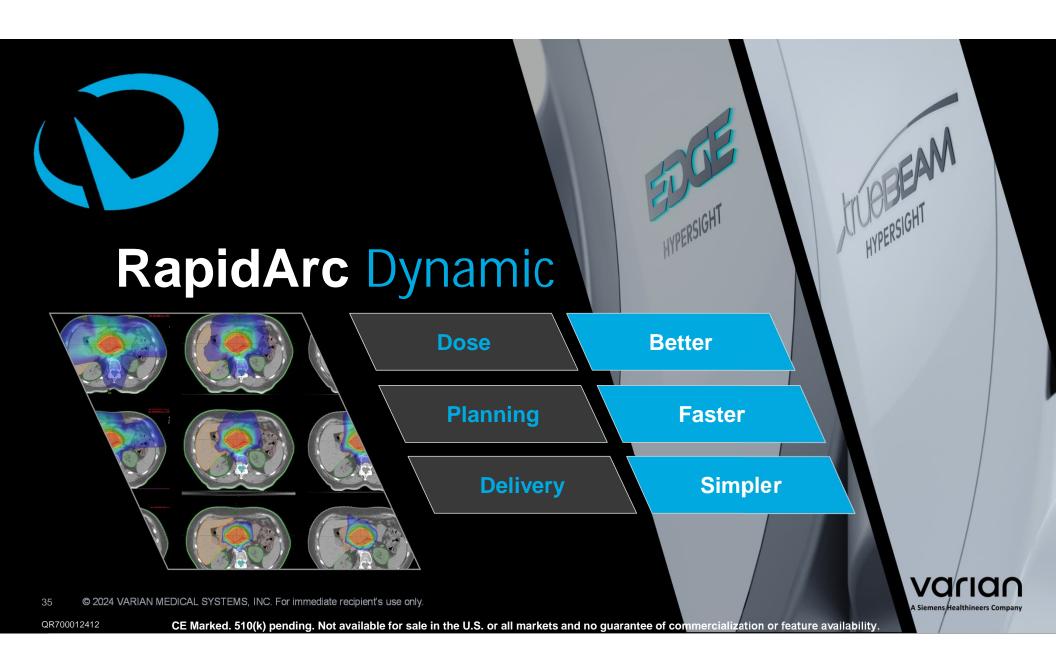


A turning point for arc therapy

Features

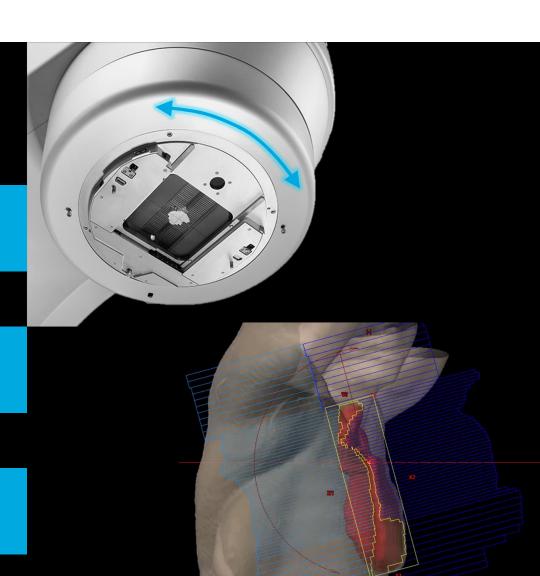

Unlocking the power of modulated ports, RapidArc, and dynamic collimator rotation in a single plan, optimization, and delivery

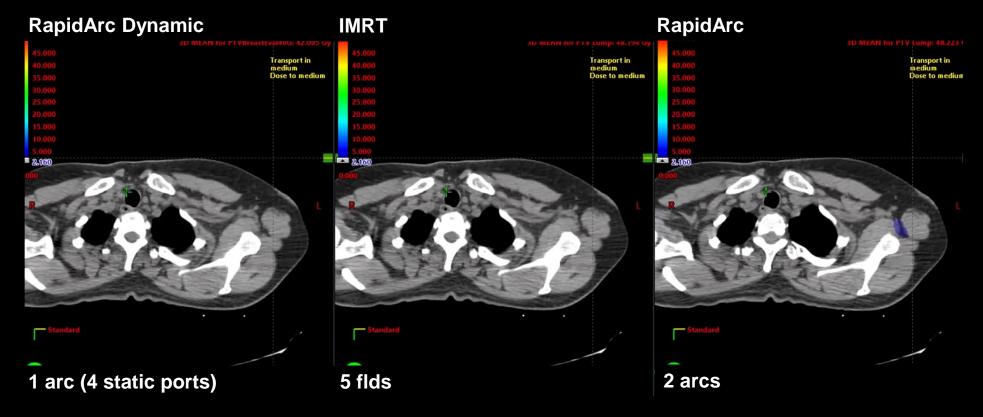
Benefits


Clinical: Designed to improve plan quality, meet target objectives and spare OARs without sacrificing throughput

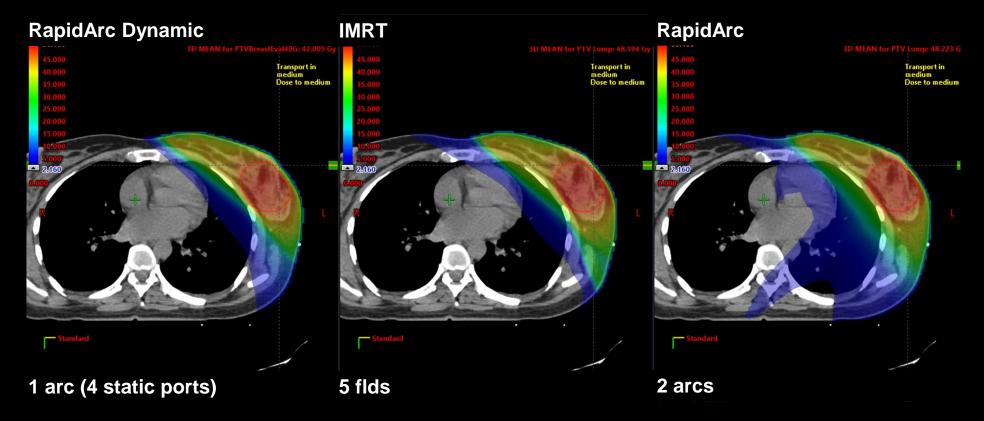
Operational: Powered by new GPU-enabled algorithms, designed to complete plan optimization in seconds

A turning point for arc therapy


New generation of optimization algorithms

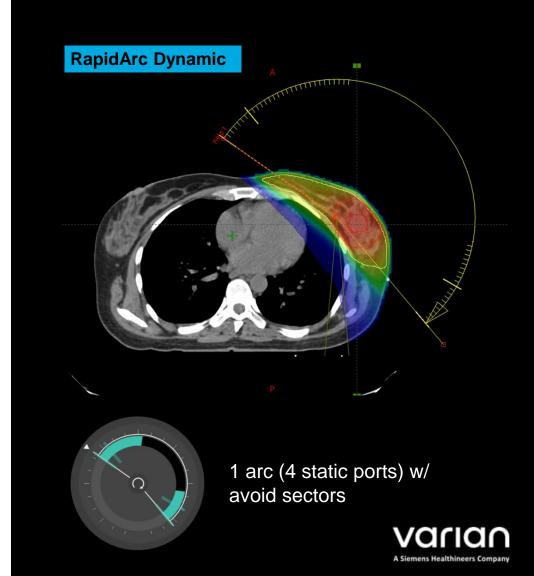

Modulated ports during an arc delivery

Dynamic collimator rotation delivery



Plan comparisons – Breast SIB

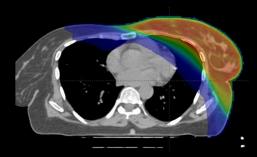
Plan comparisons – Breast SIB



Plan comparisons – Breast SIB

Clinical Goals – Contralateral Breast and Lung, Heart and Ipsilateral Lung

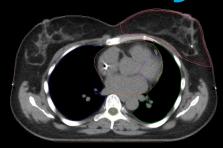
Clinical goals:	cal goals: All Plans				Evaluate Goals for All Plans								
Plan		■ RAD		▲ IMRT		• VMAT							
Total Dose		48.000 Gy		48.000 Gy		48.000 Gy							
Clinical Goal Summary		0	0	15	1	0	14	2	0	13			
● PTVLumpEval	P1	Dmax ≤ 55.00 Gy	50.42 Gy		51.02 Gy		50.93 Gy						
	P1	V 52.80 Gy ≤ 5.0 %	0.00 %		0.00 %		0.00 %						
	P1	V 45.60 Gy ≥ 95.0 %	99	99.25 %		99.06 %		99.57 %					
CONTRA_BRE	P2	Dmean ≤ 1.00 Gy	0.	0.14 Gy		0.20 Gy		0.61 Gy					
	P2	Dmax ≤ 2.40 Gy	0.	91 (Зy	3.	.71 (Gy	3.	.68 (Зy		
CONTRA_LUN	G P2	V 4.00 Gy ≤ 10.0 %	0	0.00 %		0.00 %		2.72 %		%			
HEART	P2	V 8.00 Gy ≤ 10.0 %		1.78 %		3.04 %		4.96 %					
	P2	Dmean ≤ 2.00 Gy	1.	26 (26 Gy		1.69 Gy		3.00 Gy		Зу		
O IPSILATERAL	P2	V 4.00 Gy ≤ 50.0 %	11.58 %		24.34 %		43.84 %						
	. P2	V 8.00 Gy ≤ 35.0 %	6	6.47 %		12.10 %		21.51 %					
	P2	V 16.00 Gy ≤ 15.0 %	3.58 %		6.93 %		10.11 %						
PTV Breast - P.	P1	Dmax ≤ 46.00 Gy		45.18 Gy		45.39 Gy		45.33 Gy					
PTVBreastEval	P1	D 50.0 % ≤ 43.20 Gy	41	.11	Gy	40	.67	Gy	40	.96	Gy		
	P1	V 48.00 Gy ≤ 30.0 %	7	7.50 %		11.34 %		13.23 %					
	P1	V 38.00 Gy ≥ 95.0 %	97	7.16	%	97	7.81	%	98	3.20	%		


© 2024 VARIAN MEDICAL SYSTEMS, INC. For immediate recipient's use only.

Every Gray Matters – Breast

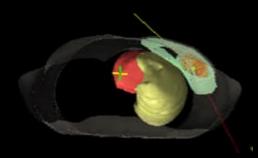
Minimizing dose to reduce heart toxicity

Predictive Factors


1.56 x

1.56 x greater risk of cardiac disease death in left-sided breast patients^{2, 3}

Dose Management


4-5 Gy

Most frequently reported mean heart dose^{1,4}

Impact of Gy

~16.3 %

Major coronary events increase by **16.3% per Gy** in the first 0-4 years post-radiation

- 1. Konstantinou E et al. Radiation Dose to critical structures from 3D CRT, IMRT & VMAT techniques for left sides Breast cancer. J Pers Med. 2024 Jan, 14(1): 63
- 2. DarbyS.C., Ewertz M., McGale P., Bennet A.M., Blom-Goldman U., Brønnum D., Correa C., Cutter D., Gagliardi G., Gigante B., et al. Risk of Ischemic Heart Disease in Women after Radiotherapy for Breast Cancer. N. Engl. J. Med. 2013;368:987–998. doi: 10.1056/NEJMoa1209825.
- 3. Bouillon K, Haddy N, Delaloge S, Garbay JR, et al. Long-term cardiovascular mortality after radiotherapy for breast cancer. J Am Coll Cardiol 2011 Jan 25,57(4):445-52.
 4. Chirillia et al Organ-sparing techniques and dose-volume constrains used in breast cancer radiation therapy Results from European and Latin American surveys; Clin
- Chirillia et al Organ-sparing techniques and dose-volume constrains used in breast cancer radiation therapy Results from European and Latin American surveys; <u>Clin</u> Transl Radiat Oncol. 2024 May; 46: 100752.

Thank you

miguel.rodriguez@varian.com

